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Abstract

This paper is in the area of automata-based formalisms of stateful systems. In particular, we have analyzed aspects of
Grid systems which can be considered when developing a prototype for dynamic reconfiguration. We describe which parts
of a Grid system can be utilized and translated into state-based formal specification, and how the subsequent deductive
verification tests for the dynamic reconfiguration can be performed.

Introduction. The Grid Component model (GCM) developed by the CoreGRID project (see Baude et al., 2009) is a
purpose-built component model to construct Grid applications. It has been adopted by the Grid Integrated Development
Environment (GIDE), allowing for easy composition, monitoring and steering of Grid systems (see Basukoski et al., 2008).
The features exposed in the GIDE allow us to use formal specification language and deductive reasoning verification
methods in the framework of automated dynamic reconfiguration. It is essential that the properties of a Grid system,
starting from the components stateful properties, and including the ones of resources (which we have collected under
the umbrella of the Environment) can be monitored and reported in order to be able to comprehend the current states
scenario. When monitoring a program we considered the impact on complexity that this type of specification will create
in respect to execution time as well as memory consumption. We have devised a process of repetitive static analysis to
minimize the impact by optimizing the program instrumentation. We can therefore monitor at runtime only a small section
of the components’s specification – the behavior of the stateful system – and leave the proofs of the inner functionality of
primitive components’ behavior to other methods, as in Barros et al. (2005). In this paper we describe how each section
of the Grid system – and the environment it lays on – can be translated into formal specification and fed into a resolution
based proof engine. Our final aim is to give a response to the tool we are developing within the GIDE indicating to whether
the reconfiguration can take place and how.

Automata-based formalism. We began our development on the techniques expressed in Basso et al. (2008a), but
changed our path to simplify development by redefining our concept of a two layers automata to a single one. We consid-
ered a simple finite state automaton on finite strings, and applied a set of specification “patterns” (following the sections
described in the next section). The automata is used for the creation of labels defining various states in which the consid-
ered components and resources can be, the derived model is then directly specified in the normal form for CTL, SNFCTL,
developed by Bolotov and Fisher (1999). It was shown in Bolotov et al. (2002) that a Buchi word automaton can be rep-
resented in terms of SNFPLTL, a normal form for PLTL. In a similar fashion we have represented a Buchi tree automaton
in terms of SNFCTL; we use SNFCTLto specify the tree automaton and (in simulations) extend this specification to the
deontic temporal specification in Basso et al. (2008b). Further, we apply a resolution-based verification technique as a
verification procedure using the tool in Zhang et al. (2008).

Formalizing components and resources. When considering what parts in the GCM can be used for formal specifi-
cation, we have considered four main sections, each of which follows specific criteria and can be easily fed into to a table
of specification “patterns”. We examine the main details below. Please not that not full specification is included for space
reasons. As an example, we consider an Application (the outmost component which must be activated first) which contains
4 components Comp1 (a composite component with a sub component SubComp1.1) which is the first to be started after
the application is as it is the first and only component, two components CompA and CompB running in parallel from a
broadcast of Comp1 (and SubComp1.1 to start in parallel with CompA or CompB), and Comp2 a component from the
gathercast of CompA and CompB.

Hierarchical Components Structure. Components in the GCM have a strict hierarchical nature. The application
can then be described as: start ⇒ Application and components of the application in the form of: Application ⇒
A gComp1, Application⇒ A♦Comp2, Comp1⇒ A g(SubComp1.1 ∧ (CompA ∨ CompB))

Inferring parallel processes from interfaces. When we consider interfaces in the GCM, we can group them in two
different types: one to one, and broadcast/gathercast. In the former we have a simple connection of one server inter-
face to a client one, while in the latter we have a single server interface which can be bound to multiple client ones.
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Figure 1: Sequential and Paral-
lel Processes

In either case, interfaces can be very useful to determine whether the com-
munication between components is carried out in a sequential or parallel matter.
Imagine a component with a broadcast server interface (or several one to one
server interfaces): we can easily assume that the components at the client side
of those interfaces can be run in a parallel matter. On the other hand, a compo-
nent which has only one server interface, can only run in a sequential matter with
the component on the client interface side (see Figure: 1). Sequential specifica-
tion looks like: Comp1 ⇒ A♦Comp2 while Parallel specification looks like:
Comp1⇒ A g(CompA ∧ CompB).
When in a sequential process is easy to understand that component will be started
sequentially, in a parallel process, there is no real certainty - component might be

all started at the next step, or first one and then the others, or perhaps none.
State of resources. When considering resources, we are able to formally specify the environment thanks to information

provided in the GCM deployment file as well as other metadata information gathered at development time through a
development interface. Furthermore the current state of each resource can be monitored at runtime giving us a complete
picture of the resources at every given moment in time and any components that might be deployed on or requesting
the use of the resource. External resources are defined as: Comp1 ⇒ A♦Res1. Deployment resources are defines as:
Node1⇒ Res1 and at runtime we can have definitions like: Res1⇒ A (Comp1 ∧ Com2).

State of components. While the states of components could have a wide spectrum of definition points (such as initial-
ized, started, suspended, terminated, . . . for the moment we can only consider the ones defined in the GCM - i.e. started
and stopped. In a way this simplifies further the formalism by representing the specification as: Comp1 for a started
component, and: ¬Comp2 for a stopped one.

Conclusions. The formal specification procedure introduced in this paper will be used in reconfiguration scenarios
to prevent inconsistency while suggesting possible corrections to the system. While we have applied this framework to a
GCM system, such procedure could be applied to other systems, giving the deductive reasoning a chance to assist other
verification methods such as model checking by filling the gaps in those areas where these other well established methods
cannot be used.

References
T. Barros, L. Henrio, and E. Madelaine. Verification of distributed hierarchical components. In In Proc. of the International

Workshop on Formal Aspects of Component Software (FACS’05), volume Electronic Notes in Theor. Computer Sci. 160,
pages 41–55, 2005.

A. Basso, A. Bolotov, and V. Getov. Automata-based formal specification of stateful systems. In In Proc. of Automated
Reasoning Workshop, 2008a.

A. Basso, A. Bolotov, and V. Getov. Behavioural Model of Component-based Grid Environments., volume From Grids To
Service and Pervasive Computing, pages 19–30. Springer, 2008b.

A. Basukoski, V. Getov, J. Thiyagalingam, and S. Isaiadis. Component-based Development Environment for Grid Systems:
Design and Implementation., volume In: Making Grids Work, pages 119–128. Springer, 2008.

F. Baude, D. Caromel, C. Dalmasso, M. Danelutto, V. Getov, L. Henrio, and C. Pérez. GCM: A Grid Extension to Fractal
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