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1 Introduction
Epistemic logic is a modal logic of knowledge (see for example (Fagin et al., 1995)) in which the knowledge of agents,
players or processes can be represented. When combined with temporal logics, to represent dynamic aspects, such logics
can be used to represent and reason about systems where evolving knowledge plays a key part such as agent based systems,
knowledge games, security protocols etc. Many such systems contain subsets of the set of propositions needed to represent
the system where exactly one member of each subset holds at any moment. An example of an “exactly one” set in a game
playing environment, where all the cards are dealt out to players a, b, c or d and ten spadesi represents that player i holds
the ten of spades card, is the set {ten spadesa, ten spadesb, ten spadesc, ten spadesd} i.e. the ten of spades card must
be held by exactly one player.

Recently we have been investigating, mechanising, and applying, temporal logics with additional constraints of the
“exactly one” type considered above (Dixon et al., 2007a,b, 2008). In our work, each logic is parametrised by a set of
propositions (or, predicates in the first-order case) where exactly one of these propositions is satisfied at any temporal
state. We have shown that, if problems can be described in such a logical framework, then not only is the description
more succinct, but the decision procedure for the logic is simpler (reducing certain aspects of the decision procedure from
exponential to polynomial).

In this extended abstract we investigate theorem proving for epistemic modal logics allowing “exactly one” sets. In
particular, we define a tableau procedure for this logic, which incorporates a DPLL (Davis et al., 1962) like mechanism to
satisfy the “exactly one” sets and show that this reduces the number of states we must construct. The full details of this
work can be found in (Konev et al., 2009).

2 Example
To illustrate the approach we focus on a simple card game from (van Ditmarsch et al., 2005). In this simple game there are
three different cards; a heart, a spade and a club. In the most basic scenario, one card is dealt to one player, a further card
is placed face down on the table and the final card is returned (face down) to the card holder.

Following (van Ditmarsch et al., 2005) we use simple propositions to represent the position of the cards. So, if spadesw
is true, then Wiebe holds a spade, if clubst is true, then the clubs card is on the table, if heartsh is true, then the hearts card
is in the holder, etc. Similarly, Kwspadesw means that Wiebe knows he holds a spade. And so on.

We can identify six “exactly one” sets, firstly

{spadesw, spadesh, spadest}

denoting the spades cards can be in exactly one place at any moment, and the same for clubsi and heartsi for each of
i = w, h, t. Further,

{spadesi, heartsi, clubsi}

for i = w, h, t denotes for i = w that Wiebe can only hold exactly one card or for i = h exactly one card can be in the
holder or i = t exactly one card can be on the table.

3 SX5n— “Exactly One” sets in Epistemic Logic
The logic we consider is called “SX5n”. The main novelty in SX5n is that it is parametrised by “exactly-one”-sets P1,
P2,. . . , denoted SX5n(P1,P2, . . .), which are constructed under the restrictions that exactly one proposition from every
set Pi is true in any state. Additionally there may be a set A of normal (unconstrained) propositions.

Assuming a set of agents where Ag = {1, . . . n}, formulae are constructed from a set PROP = {p, q, r, . . .} of atomic
propositions, using the usual Boolean connectives: ¬ (not), ∨ (or), ∧ (and) and⇒ (implies) plus Ki, for i ∈ Ag (agent i
knows).



A model structure, M , for SX5n is a structure M = 〈S,R1, . . . , Rn, π〉, where: S is a set of states; Ri ⊆ S × S, for
all i ∈ Ag, is the agent accessibility relation where Ri is an equivalence relation; and π : S × P → {T, F} is a valuation.

As usual, we define the semantics of the language via the satisfaction relation ‘|=’. This relation holds between pairs of
the form 〈M, s〉 (where M is a model structure and s ∈ S), and S5n-formulae. The rules defining the satisfaction relation
are given below where the semantics of the Boolean operators is as usual.

〈M, s〉 |= q iff π(s, q) = true (where q ∈ PROP)

〈M, s〉 |= Kiφ iff ∀s′ ∈ S′ if (s, s′) ∈ Ri then 〈M, s′〉 |= φ

If there is a model structureM and state s such that 〈M, s〉 |= ϕ then ϕ is said to be satisfiable. If 〈M, s〉 |= ϕ for all states
s and all states s then ϕ is said to be valid. The set of modal relations (for each agent i) are assumed to be equivalence
relations.

4 Results
In (Konev et al., 2009) we present a tableau algorithm for SX5n. Consider an SX5n formula ϕ to be shown satisfiable. The
algorithm constructs sets of extended assignments of propositions and modal subformulae i.e. a mapping to true or false,
that satisfy both the exactly one sets and ϕ. However, rather than using the usual alpha and beta rules (see for example
the modal tableau in (Halpern and Moses, 1992; Wooldridge et al., 1998)) these are constructed using a DPLL-based
expansion (Davis et al., 1962). Next the algorithm attempts to satisfy formulae of the form ¬Kiψ made true in such
an extended assignment by constructing Ri successors which are themselves extended assignments which must satisfy
particular subformulae (and the exactly one sets).

We show that the tableau algorithm is sound and complete and that given ϕ an SX5n formula then the tableau algorithm
runs in time polynomial in (

k × |P1| × . . .× |Pn| × 2|A|+k
)

where |Pi| is the size of the set Pi of exactly one propositions, |A| is the size of the set A of non-constrained propositions,
and k is the number of Ki operators in ϕ.

Future work involves applying this logic to more case studies and extending SX5nwith temporal aspects to target
evolving knowledge allowing us to be able to represent and reason about problems from complex domains such as security
and planning more efficiently.
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