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Abstract

We introduce improvements for second-order quantifier
elimination methods based on Ackermann’s Lemma and
investigates their application in modal correspondence
theory. In particular, we define refined calculi and pro-
cedures for solving the problem of eliminating quanti-
fied propositional symbols from modal formulae. We

in (1993) and together with Doherty and Lukaszewicz
in (1997), the YEMA algorithm for modal logic intro-
duced by Conradie, Goranko and Vakarelov in (2006).
Methods following the saturation approach include the
ScAN algorithm of Gabbay and Ohlbach (1992), and hi-
erarchical resolution of Bachmair, Ganzinger and Wald-
mann (1994).

Here, | am interested in methods using the substitution-

prove correctness results and use the approach to computerewrite approach to second-order quantifier elimination.

first-order frame correspondence properties for modal ax-
ioms and modal rules. Our approach can solve two new
classes of formulae with wider scope than existing classes
known to be solvable by second-order quantifier elimina-
tion methods.

1 Second-Order Quantifier Elimi-
nation

An application of second-order quantifier elimination is
correspondence theory in modal logic. Propositional
modal logics, when defined axiomatically, have a second-
order flavour, but can often be characterized by classes
of model structures which satisfy first-order conditions.
Frequently, with the help of second-order quantifier elim-
ination methods, these first-order conditions, called &#am
correspondence properties, can be automatically derived
from the axioms. For example, using the standard rela-
tional translation method the modal axi@n= Vp[Cp —

Op] translates to this second-order formula:

VPVz|Vy[R(z,y) — P(y)]
— Jz[R(z,z) A P(2)]].

1)

This formulais equivalent to a first-order formula, namely
Vz3y[R(z,y)], and is the first-order correspondence
property of axionD. It can be derived automatically with
a second-order quantifier elimination method by eliminat-
ing the second-order quantifiéP from (1).

Several second-order quantifier elimination meth-
ods exist. These methods belong to two categories:
(i) substitution-rewrite approaches which exploit mono-
tonicity properties, and (ii) saturation approaches, Whic
are based on exhaustive deduction of consequences.
Methods following the substitution-rewrite approach in-
clude the Sahlgvist-van Benthem substitution method for
modal logic, the s algorithm introduced by Szalas

In particular, my focus is on methods that are based on a
general substitution property found in Ackermann (1935).
This result, calledAckermann’s Lemmatells us when
guantified predicate symbols are eliminable from second-
order formulae. For propositional and modal logic Ack-
ermann’s Lemma can be formulated as follows. In any
model,

Ip[(ae — p) A B(p)] is equivalentto G2,

2)
provided these two conditions hold: ¢j)is a proposi-
tional symbol that does not occur iy and (ii) p occurs
only negatively ing. The formulas? denotes the formula
obtained fromg by uniformly substitutingx for all oc-
currences op in 3. This property is also true, when the
polarity of p is switched, that is, all occurrencesyoin 3

are positive and the implication in the left conjunct is re-
versed. Applied from left-to-right the equivalence (2) of
Ackermann’s Lemma eliminates the second-order quanti-
fier dp. In fact, all occurrences qgf are eliminated. This
idea can be turned into an algorithm for eliminating exis-
tentially quantified propositional symbols. | refer to this
algorithm as théasic Ackermann algorithm

2 A Refined Ackermann Approach

Based on the basic Ackermann algorithm | introduce a
refined second-order quantifier elimination approach for
modal logic. Like the ®EmA algorithm, rather than
translating the modal axiom into second-order logic and
then passing it to a second-order quantifier elimination
method, the approach performs second-order quantifier
elimination directly in modal logic. Only in a sub-
sequent step the translation to first-order logic is per-
formed. For example, given the second-order modal for-
mulavp[Op — Op], the approach first eliminat&® from

the formula and returns the formu{al. Subsequently



this is translated to first-order logic to give the expected
seriality propertyz3y[R(z, y)].

The approach is defined for propositional multi-modal
tense logics, more precisely, the log{¢,,,, (', 7+) with
forward and backward looking modalities, nominals, and
second-order quantification over propositional symbols.

A main motivation for this work has been to gain a
better understanding of when quantifier elimination meth-
ods succeed, and to pinpoint precisely which techniques
are crucial for successful termination. | define two new
classes of formulae for which the approach succeeds:
the classC and an algorithmic version calle€”. The
classes define normal forms for when Ackermann-based
second-order quantifier elimination methods succegd.
and C> subsume both the Sahlqvist class of formulae
and the class of monadic-inductive formulae of Goranko
and Vakarelov (2006). | present minimal requirements
for successful termination for all these classes. This al-
lows existing results of second-order quantifier elimina-
tion methods to sharpened and strengthened.

| consider two applications of the approach:

(i) Computing correspondence properties for modal
axioms and modal rules For example, equiva-
lently reducing axionD to the seriality property,
or equivalently reducing the modal rulép/Op to
Ve3y3z[R(x,y) A R(z,y)].

(i) Equivalently reducing of second-order modal prob-
lems. For example, the second-order modal formula
Vp¥q[O(p V q) — (Op Vv Oq)] equivalent reduces
to Vp[Op — Op], or the axiomD equivalently re-
ducestodT.

While the approach follows the idea of the basic Ack-
ermann algorithm and is closely related to thesalgo-
rithm and the EMA algorithm, | introduce a variety of
enhancements and novel techniques.

First, which propositional symbols are to be eliminated
can be flexibly specified, and the approach is not lim-
ited to eliminating all propositional symbols. Second, in
order to be able to ensure effectiveness and avoid unin-
tended looping, the approach is enhanced with ordering

refinements. In the approach an ordering on the non-base

symbols (these are the symbols that we want to elimi-
nate) must be specified and determines the order in which
these symbols are eliminated. At the same time the or-
dering is used to delimit the way that the inference rules
are applied. It turns out, that the adoption of ordering
refinements allows for a more in-depth analysis of how

inference rules. This has the advantage that the approach
can be studied independently of practical issues such as
rule application order, strategies and heuristics. lvedlo

for a more fine-grained analysis of the computational be-
haviour of the approach and more general results can be
formulated.

3 Results

The following results have been obtained.

1. Any derivation in the approach is guaranteed to ter-
minate and the obtained formula is logically equiv-
alent to the input formula. This means the refined
modal Ackermann calculus is correct and terminat-
ing.

2. Any problem in the clas§~ is effectively and suc-
cessfully reducible by the rules of the approach using
some ordering.

3. For the subclas§ of C~, the sign switching rule,
redundancy elimination are not needed, and the or-
dering is immaterial.

4. Whenever the approach successfully eliminates all
propositional symbols for a modal formudathen
(@) -« is d-persistent and hence canonical, and
(b) the formula returned is equivalentdo

5. All modal axioms equivalent to the conjunction of
formulae reducible to clauses (handC~ are ele-
mentary and canonical.

These results are improvements for substitution-rewrite
approaches based on Ackermann’s Lemma, and present
strengthenings of Sahlqvist's theorem and the corre-
sponding result for monadic-inductive formulae.

The significance of the last result is that axioms that are
equivalent to first-order properties and are canonical can
be used to provide sound and complete axiomatizations
of modal logics.

4 Further details

For a full account of the approach and the results, | refer
to Schmidt (2008) and Chapter 13 in Gabbay et al. (2008).
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