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1 Introduction

In the domain of first-order theorem proving, recently
so-called instantiation-based methods have gained some
attention as they promise advantages over longer estab-
lished methods. Although modern instantiation-based
methods for first-order logic were proposed only in this
decade, they are already competitive with and in some ar-
eas outperform classical methods that have a history of
development since the 1970s. Because of the novelty of
instantiation-based methods, not many results exist for
equational reasoning and reasoning modulo theories. An
integration of these features would make a calculus more
mature and open up new areas of application. The main
subject of this research is the Inst-Gen calculus as initially
presented in Ganzinger and Korovin (2003).

The central rationale behind the Inst-Gen calculus and
its implementation in the iProver system is the combi-
nation of industrial-strength ground satisfiability solving
with true first-order reasoning. In particular, the iProver
approach aims to harness the strengths of an off-the-
shelf ground satisfiability solver in a first-order proce-
dure for satisfiability modulo theories (SMT). The lack
of complete handling of quantification is a shortcoming of
many SMT provers and their limited support of quantified
clauses makes them essentially reason on ground satisfia-
bility. However, they are efficient in ground solving and
iProver therefore delegates detecting unsatisfiability to a
ground SMT solver and focuses on generating instances
from first-order clauses such that ground unsatisfiability
can be witnessed.

The work presented here is concerned with efficient in-
tegration of ground solving modulo equality into the first-
order instantiation process of Inst-Gen. So to speak, the
first-order reasoning needs to stand firmly on the ground,
but robust integration of ground reasoning also guides the
instantiation process through provision of satisfiable mod-
els and is used to justify simplifications.

2 The Inst-Gen Calculus

Formally, the set of first-order clauses .S is abstracted to
a set of ground clauses S L by substituting all variables
with a distinguished constant L with a substitution that is
also denoted by _L. If this ground abstraction S| is unsat-
isfiable, then, by Herbrand’s Theorem, S is unsatisfiable

as well and the procedure can terminate. In the case of
satisfiability of S, the first-order clause set S is satisfi-
able if it is saturated under instantiation inferences of the
calculus. Otherwise, one needs to continue generating in-
stances either as witnesses for the unsatisfiability of S L
or to reach saturation.

If the ground abstraction S has been proved to be sat-
isfiable by the ground solver, the first-order reasoning can
make use of a ground model I, for S by means of a
selection function sel that constrains possible inferences
between clauses to their respective selected literals. Al-
though Inst-Gen inferences are sound regardless of the
selection function, the selection function adds an amount
of goal-direction that is necessary to be efficient in prac-
tice. In each clause C, the selection sel(C') = L returns
a literal L in C such that the ground literal L_L is true in
I, . See Korovin (2009) for a detailed description of the
calculus, especially for arguments of its completeness.

It is important to note that literal selection in the Inst-
Gen calculus is different from literal selection in resolu-
tion, as described e.g. in Bachmair and Ganzinger (2001).
The selection function does select exactly one literal from
every clause, but is not fixed throughout the derivation. It
may need to be adapted to reflect changes of the ground
model 1| when instances are added to S.

3 The Saturation Process, Ground
Solving and Selection

The implementation of the iProver system as described in
Korovin (2008) uses a variant of the given-clause algo-
rithm. It keeps two disjoint sets of active clauses A and
passive clauses P where all inferences between clauses
in A have been generated. In every step, a clause Cy (the
given clause) is taken from P, all possible inferences with
clauses in A are added to P and Cy is moved from P to
A. If P is empty, then all clauses are in A and it is sat-
urated, which establishes satisfiability of S. Separately,
all clauses in A and P are grounded with the L constant
and checked for unsatisfiability in the ground solver. The
procedure then either terminates with unsatisfiable as a
result or obtains a model I, to be used for the selection
function.

The model I, is given by a ground solver that may
choose to discard as much of the model from the previous



step as it sees fit, therefore giving rise to an uncontrol-
lable number of changes to the selection function. When
sel(C) for a clause C' in the active set .A changes, the
clause C has to be moved to the passive set P as with a
different selection new inferences may become possible
that have not been generated, violating the invariant of
saturation of .4 under inferences.

Therefore, it seems beneficial to attempt to keep the
selection in the active clause set A and only to change
it when necessary, i.e. when there is no model of S
containing the selected literals (. 4 sel(C) L. This lazy
strategy allows for a deviation from the particular model
the ground solver provides by maintaining a separate
model that follows the literal selection and the heuristics
involved while still being sound and complete in the case
of clauses without equality.

With equality or other background theories, induced
equalities have to be considered on potentially many se-
lected literals, making it seem inefficient to check if a
set of selected literals can be extended to a model. Pos-
sible alternative strategies for selection would either ea-
gerly follow the model as it is obtained from the ground
solver, thus weakening the selection heuristics and caus-
ing more frequent moves of clauses from the active set.
Alternatively, the incompleteness of checking if the se-
lected literals are a model could be accepted and deferred
until the active set becomes saturated. Then, a full check
on all selected literals would either bring up inconsistent
literals and subsequently move clauses or find the selected
literals to be consistent and thus prove satisfiability.

4 Results and Future Work

Which strategy is most successful will certainly depend
on the solver, its strategies and the amount of cooperation,
and, of course, on the clause set itself. Ongoing work is
evaluating CVC3 and Z3, two leading SMT solvers, as
ground satisfiability solvers modulo equality and modulo
theories as well as the most successful strategies for literal
selection as described above. Early experiments with the
problems of the TPTP library show that the lazy strategy
leaves only relatively few problems with an inconsistent
set of selected literals on saturation. Moreover, in most
cases the problem is proved satisfiable with a literal selec-
tion that is a model for S_L after only one or two further
checks, indicating that the lazy strategy might be viable
for ground solving modulo equality and theories.
Comparing a version of iProver using MiniSAT for
ground solving without equality with an early implemen-
tation integrating CVC3 as a ground solver modulo equal-
ity on the TPTP library (detailed figures in table 1) show
that on the one hand, there is a significant overhead for the
SMT solving such that SAT solving is still faster in many
cases. On the other hand, there are cases where ground
equational reasoning is profitable and the overhead pays
off such that additional problems can be solved. As ex-

Equational | Num. only in iProver + faster in iProver +
atoms Probl. | CVC3 | MiniSAT | CVC3 | MiniSAT
0% 3130 6 346 522 1736
0% - 10% 1915 24 118 54 449
10% - 20% 2622 49 76 205 408
20% - 30% 1593 15 44 47 336

| 100% | 1515 | 205 | 26 | 85 | 100 |

Table 1: Solved problems in TPTP v3.5.0 grouped by per-
centage of equational atoms. No significant number of
problems available with between 30% and 100% of equa-
tional atoms. Run on AMD Athlon XP 2200+ with 500
MB and a timeout of 3 mins.

pected, ground solving with equality is most useful for
pure equational problems.

Future work will use the good grip the iProver system
is getting on ground solving modulo equations and the-
ories to progress with instance generation of first-order
clauses modulo equality and theories where lifting the
ground model to obtain a literal selection is even more
important and thus help iProver climb up to the important
application areas of satisfiability modulo theories.
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