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1 Introduction

Temporal logic is considered an important tool in many défe areas of Artificial Intelligence and Computer Sci-
ence, including the specification and verification of conent and distributed systems. Computational Tree Logic CTL
(Clarke and Emersbh, 1982) is a branching-time temporatldgere we present the first resolution theorem prover for
CTL, CTL-RP, which implements the sound and complete clasmlution calculuRy;; (Zhang et dl.l 2008) based
on an earlier calculus Hy Bolofol (2000). The caIaﬂi@sﬁ’L is designed in order to allow the use of classical first-order
resolution techniques to emulate the rules of the calciNestake advantage of this approach in the development of our
prover CTL-RP which uses the first-order theorem prover SPA8eidenbach et hl., 2007).

2 Normal form for CTL SNF¥,, and clausal resolution calculus RE’TSL

The calculus?g*TS’L operates on formulae in a clausal normal form called Segardbrmal Form with Global Clauses
for CTL, denoted bySNF¢,..; . The language a8NF%,,; clauses is defined over an extension of CTL in which we label
certain formulae with an indeid taken from a countably infinite index detl and it consists of formulae of the following
form.

AO(start = \/j:1 mj) (initial clause) AO(A™, i = EO V?;l m; <md>> (E-step clause)
AO(true = \/;_, m;) (global clause) AO(A!_, i = AQl) (A-sometime clause)
AO(A, i = AO szl m;) (A-step clause) AO(AL, L = EOL Lo (iay) (E-sometime clause)

wherestart is a propositional constant, (1 < ¢ < n), m; (1 < j < k) and! are literals, that is atomic propositions
or their negationind is an element ofnd. The symbolsnd and LC(ind) represent indices and limit closure of indices,
respectively. As all clauses are of the fol(P = D) we often simply write? = D instead.

We have defined a set of transformation rules which allowsusansform an arbitrary CTL formula into an equi-
satisfiable set 0fNF%,.,; clauses, a complete description of which can be found inifglea al.| 2008). The transforma-

tion rules are similar to those im 00), but maatifto allow for global clauses.
RE:FSL consists of two types of resolution rulesegp resolution rules (SRES1 to SRESS8) awentuality resolution rules

(ERES1 and ERES?2). Motivated by refinements of propositiand first-order resolution, we restrict the applicabitify
step resolution rules by means of an atom orderingnd a selection functiof, which helps to prune the search space
dramatically. Due to lack of space, we only present two ofstieg resolution rules and one of the eventuality resolution
rules. In the followind is a literal, P and(@ are conjunctions of literals, and and D are disjunctions of literals.

sresy L= EO(CV D inay, Q = AC(D V ) ERESL Pt = EOEOI, Q = A0l
PAQ = EO(CV D)na Q= A(-PTW-I)
SRES3 P = EO(C VI)(inay, @ = EO(DV ) (ing where PT = EOED! represents a set 8iNF§,,; clauses
PAQ=EO(CV D)ina which together implyP" = EOEDI.

We develop a new completeness proof with a different aprdan mm) The proof also shows that
some eventuality resolution rules |n__(BhtOO), Vihize the most costly rules of the calculus, are redundarg. Th
inference rules ORE*TS'L can be used to decide the satisfiability of a given/$edf SNF%,,; clauses by computing the
saturationN’ of N using at most an exponential number of inference stdpss unsatisfiable iffN’ contains a clause
true = false or start = false. This gives a complexity optimal EXPTIME decision procesltor CTL.

*This work is supported by EPSRC grant EP/D060451/1.
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Figure 1: Performance on a set of benchmark formulae

3 CTL-RP

In order to obtain an efficient CTL theorem prover and to reewsting state-of-the-art first-order resolution theorem
provers, we adopt an approach analogous to that used ind@tzsid Konewv, 2004) to implement a resolution calculus
for PLTL to implement the calcquECTL and the associated decision procedure for CTL. A formalrifetsan of the
approach and related proofs are presented in detailin (Z&gal.) 2008).

In our implementation oRCTL, we first transform all SN, clauses excepA- andE-sometime clauses into first-
order clauses. Then we are able to use first-order orderetlitie® with selection to emulate step resolution. For this
part of the implementation we are using the theorem provAISSPA - and E-sometime clauses cannot be translated to
first-order logic. Therefore, we continue to use the evdityu@solution rules ERES1 and ERES2 for inferences with
andE-sometime clauses, respectively, and use the loop seagohithm presented in_(Bolotov and Dixan, 2000) to find
suitable premises for these rules. We utilise first-orddeoed resolution with selection to perform the most costbk tof
“looking for merged clauses” in the loop search algorithrd are compute the results of applications of the eventuality
resolution rules in the form of first-order clauses.

Besides CTL-RP, there is only one other CTL theorem provekm@v of, namely a CTL module for the Tableau
Workbench (TWB) l(Abate and Gore, 2003). We have createdraésets of benchmark formulae that we have used to
compare CTL-RP version 00.09 with TWB version 3.4. The corigpa was performed on a Linux PC with an Intel Core
2 CPU@2.13 GHz and 3G main memory, using the Fedora 9 opgmststem. In FigurEll, we show the experimental
results on one of those sets of benchmark formulae. Thisfdetrehmark formulae consists of one hundred formulae
such that each formula specifies a randomly generated statgition system. The graph in Figlide 1 indicates the CPU
time in seconds required by TWB and CTL-RP to establish thisfebility or unsatisfiability of each benchmark formula
in the set of benchmark formulae. CTL-RP shows a much mobdespeerformance on these benchmarks than TWB.
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